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Abstract: We start with the observation that the quantum group SLq(2\ described
in terms of the algebra of functions has a quantum subgroup, which is just a usual
Cartan group. Based on this observation, we develop a general method of con-
structing quantum groups with similar property. We also develop this method in
the language of quantized universal enveloping algebras, which is another common
method of studying quantum groups. We carry out our method in detail for root
systems of type SL(2)', as a byproduct, we find a new series of quantum groups-
metaplectic groups of SL(2)-type. Representations of these groups can provide inter-
esting examples of bimodule categories over monoidal category of representations
ofSLq(2).

Introduction

The goal of this paper is to analyze the notion of a quantum group. There are two
approaches to this notion:

In the first approach, one describes a quantum group G in terms of a Hopf
algebra A — A(G) which plays the role of the algebra of functions on G. Then one
studies the monoidal category of y4-comodules, which is thought of as the category
of representations of G. Our basic motivating example is the algebra A of regular
functions on the quantum group SLq(2) (see [R-T-F, M]).

In the second approach, one describes the quantum group in terms of a Hopf
algebra U CA*9 which plays the role of a universal enveloping algebra, and studies
the tensor category of {/-modules. This approach was initiated by Drinfeld [D] and
Jimbo [J]. We use Lusztig's exposition (see [L]).

We decided to find a way from the first definition to the second one, by trying
to understand what axioms and structures lie behind it.

We begin with the Hopf algebra A = Aq of regular functions on SLq(2). This
Hopf algebra supplies us with the material for axiomatic constructions and gener-
alizations. Then our axiomatic approach gives us the direction in which to make
further investigation of the Hopf algebra of regular functions on SLq(2), and so on.
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The results of this article could be formulated as follows:

1. We propose an axiomatic construction of Hopf algebras A and U, based on
the observation that the quantum group G contains a quantum subgroup, which is
just a usual Cartan subgroup. In this paper we give detailed analysis of the SLq(2)
case, starting from the one-dimensional torus and the root system of SL(2).

2. Our construction leads us to a new class of quantum groups of SL(2)-
type which seem to be the quantum analogues of metaplectic extensions of the
group SL(2).

3. Our approach forced us to introduce a notion of the tetramodule (see [Kh]).
We are thankful to V. Lyubashenko and S. Shnider who pointed out to us that this
notion had already appeared in the literature under many other names. For example:
bidimodule [G-S], Hopf bimodule [L-S], two-sided two-cosided Hopf module [Sch],
4-module [S-S], bicovariant bimodule [W].

We plan to develop a similar approach to other quantum groups in future
publications.

This work was partly done during our visit to Tel-Aviv University and LH.E.S.
The authors thank the Department of Mathematics of Tel-Aviv University and
LH.E.S. for supporting this work.

The first author was partially supported by an NSF grant. The second author
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The second author is thankful to V. Kac, D. Kazhdan, M. Khovanov and
L. Korogodsky for their interest in this paper and stimulating discussions, to
V, Lyubashenko for his help with literature and references and useful discussions.

1. Algebra of Regular Functions on SLq(2)

1.1. For every q G (C* we consider the quantum group SLq(2). This group is defined
by its algebra of functions Aq which is an algebra generated by four noncommuting
elements (a,b,c,d), satisfying the following relations [R-T-F]:

cd = q ldc, bd — q ldb ,

be = cb, ad — da = (q~l — q)bc ,

ad - q~lbc = 1 .

We introduce the matrices

Y =

r - i f ' ) Q=ίo -'b d *~ {q-1 0
^ / \ •*•

Then we can rewrite the relations (*) in a more compact form:

YQYt = Q,
Ύ1QΎ = Q .
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1.2. Remark. In a similar way one can describe the quantum group GLq(2).
Namely, the relations

imply that x\ = X2 Hence, we can define the algebra of functions on the quantum
group GLq(2) as the algebra generated by a,b,c,d,x with relations: 1) x is an
invertible element in the center; 2) YQYt = xQ = Y'QY.

1.3. The comultiplication in the algebra Aq is defined as follows:

(**) Δa =

Λb — a

Using the natural imbeddings /', i11 : Aq -* Aq ®Aq, (i'(x} =x® 1, ί"(x) = I
we can rewrite the comultiplication formulae (**) as follows:

Δ(Y) = ί'(Y) - i"(Y),

which is an equality in Mat(2,Ag ®Aq).
There exists an antipode i in the algebra Aq, and it is defined as follows:

a ι-» d b H^ — qb ,

d H-» a c H-> — q~lc .

In a more compact form:

1.4. Analyzing this algebra we note that it has the following important property:
Let / C Aq be a two-sided ideal generated by b and c. Then / is a Hopf ideal

in Aq, i.e. ΔI e A 01 +1 ®A and /(/) C /. The quotient Hopf algebra S = ̂ g// is
isomorphic to the algebra of functions on the algebraic group H = C*:

Δd = d

Informally, this means that our quantum group SLq(2) contains the usual group
H = (C* as a subgroup.

2. Axiomatic Approach

2.1. Let us fix a torus H (i.e. an algebraic group isomorphic to C*w) and denote
by S the Hopf algebra of regular functions on H. We would like to study pairs
(AJ) satisfying the following property:

Assumption I. A is a Hopf algebra (with multiplication m and comultiplication A)
and / C A is a two-sided Hopf ideal, such that A/I is isomorphic to S as a Hopf
algebra.
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2.2. Note that the comultiplication A'.A^A^A leads to two S-comodule struc-
tures on A:

Cf : A — > S <g> A, ct = (pr ® id) A ,

cr : A —> A 0 5, cr = (id 0 pr)/l ,

where pr is the natural projection A — » S = ,4/7.
These structures define the algebraic actions Sf and sy of the algebraic group H

on A These actions commute and preserve 7.
We also consider the adjoint action of H : adh = s^(h) s~l(h), h £ H.

2.3. Consider an associated graded algebra

where

It is easy to see that gr^4 inherits the structure of a graded Hopf algebra with
equal to S. In particular, gr^4 has the structure of a graded S-bicomodule.

2.4. We have two natural S-module structures on gr^4. These structures commute
and preserve grnA.

The S-bicomodule and S-bimodule structures are compatible. We will describe,
for example, the compatibility of the left S-comodule and right S-module structures:
for any h G 77, s G S, x G grA

s,(h)(xs) = s,(h)(x) s,(h)(s) ,

or, in other words,

The other three relations are of the same type:

cj(sx) = As ct(x),

cr(xs) — cr(x)As ,

cr(sx) — As cr(x) .

2.5. Definition. We call the linear space V an S-tetmmodule if V is equipped
with commuting left and right S-module structures, commuting left and right
S-comodule structures, and the S-bimodule and S-bίcomodule structures are com-
patible (see 2.4).

3. S-Tetramodules

3.1. For properties of tetramodules we use notations of [Kh]. See also [A, S], bidi-
modules - [G-S], Hopf bimodules - [L-S], two-sided two-cosided Hopf modules -
[Sch], 4-modules - [S-S], bicovariant bimodules - [W].

3.2. There is another shorter and more invariant way to describe the notion of
tetramodule. Let us define a (0,1 )-graded space to be a graded vector space
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B — 0 BΪ such that Bj = 0 for / φ 0, 1 . In the category of (0, 1 )-graded spaces
we can define the restricted tensor product by C / 0 r F = (£/0F)oθ(ί/(8)F)ι =

Now define a restricted bialgebra as a (0, 1 )-graded vector space B together with
morphisms m : B ®rB — > B, A :B ̂  B ®rB, s : C — > B and 77 : B — > C, satisfying
the usual axioms of a bialgebra.

Lemma. Lei 5 = (BQ = S,B\ = F) be a (0, \)-graded vector space. Then to define
a structure of a restricted bialgebra on B is the same as to define a structure of
a bialgebra on S and a structure of an S-tetramodule on V .

3.3. Consider the case when S is the Hopf algebra of regular functions on a torus
H. In this case we can give an explicit description of the category of S-tetramodules
(for any S, see [A, S]). We use the following standard

Lemma. Let W be an S-module equipped with the compatible algebraic action of
the group H. Then W = S ® WH \ where WH is the space of H -invariants.

3.4. Let us apply this lemma to our case. Let V be an S-tetramodule. Applying
Lemma 3.3 to the right action of H on V and the right multiplication by S we can
write V as V = VH ® S.

We want to describe an S-tetramodule structure on V in terms of some structures
on the vector space VH .

The right action of H on VH is trivial. It is clear that VH is adπ -invariant, so
the left action of H on VH coincides with the adπ action. Hence, knowing the adπ
action on VH , we can reconstruct the left and right actions of H on V ' .

The right action of S on V is defined by the decomposition V = VH 0 S. Now
we have to reconstruct the left action of S on V.

Let A be the lattice of characters of H. Then A C S is a basis of S. For λ G A
consider operators m^(λ) and mr(λ) of left and right multiplications on λ in F, and
set L(λ) = m/(λ)mr(λ)~l . Since operators mr and m\ both are compatible with left
and right actions of H operators L(λ) commute with the right and the left action
of H and hence preserve the subspace VH .

So we have defined a homomorphism L of A into automorphisms of VH , com-
muting with adfj. Knowing L we can reconstruct the left action of S on V.

3.5. Summary. Let S be the Hopf algebra of regular functions on a torus H. Then
the functor V —> VH gives an equivalence of the category of S-tetramodules with
the category of algebraic //-modules equipped with the commuting action L of the
lattice Λ.

4. Next Step - All2

4.1. Let us return to a Hopf algebra A with a Hopf ideal /, such that gr0^4 equals
5. We denote gη A by T. Then T = I/I2 is an S-tetramodule. Let us denote TH

byM.
We assume that our tetramodule T satisfies the following assumption:

Assumption II. The space M is a direct sum of nontrivial nonequivalent one-
dimensional representations of the torus H.
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4.2. Example. Let G be a reductive algebraic group, H its Cartan subgroup. Let
A — <C[G] be the Hopf algebra of regular functions on G and / the ideal of functions
equal to 0 on H. Then S = A/I equals C[//], T = I/I2 is an S-tetramodule. The
space M = TH is isomorphic to

As an //-module, M is a direct sum of one-dimensional representations Mα

which correspond to roots of G; in particular it satisfies Assumption II.
Consider a family of quantum deformations Gq of the group G. By this we

mean a flat family of Hopf algebras Aq depending on some parameter q which
for some value of q gives A. Let us assume that we also can flatly deform the
ideal / such that the family of quotient Hopf algebras Hq — Aq/Iq is constant and
equals S — £[//]. Under such deformations dimensions of different components of
the space Mq can only drop, so it will satisfy Assumption II. If we take, for example,
the Hopf algebra of functions on SLq(n) (see, for example [M2]) for generic q, the
space M will have only components Mα corresponding to roots α such that either
α or — α is a simple root (see [Kh]).

4.3. Now we consider an S-tetramodule T satisfying the assumption II. Thus
M = φMα, where α runs through some finite subset Σ c Λ\{0} and dimMα = 1
for every α. The action L of the lattice A on M commutes with adH and hence
preserves every subspace Mα. On the space Mα a homomorphism L (see 3.4) is
given by a character yα : A — > <C* that is by an element yα in H.

4.4. Summary. Under assumptions I and II an S-tetramodule T is fully described
up to an isomorphism by a finite subset Σ in Λ\{0} and a map γ : Σ — > H.

4.5. Consider the adjoint action of the group H on the exact sequence

0 -> T -> A/I2 -> S -> 0 .

Then the action on S is trivial and the action on T by assumption II does not have
invariant vectors. Thus as an //-module this sequence canonically splits: A/I2 =
S®T.

4.6. Resume. Under assumptions I and II an S-tetramodule T allows us to describe
completely the structure of A /I2 as an algebra and an ^-bicomodule.

*. Passing to the Dual Picture

*.l. General Case

*././. Let A be a Hopf algebra. We would like to describe the monoidal category
Rep(^4) of representations of A9 i.e. a monoidal category of left ^-comodules. One of
the standard ways to do it is to pass to modules over the dual algebra A*. We define
the multiplication in the vector space A* to be dual to the opposite comultiplication
in A: for f,g G^4* we define (/ g)(a) as (0®/)(/d(α)).

The antipode can also be easily defined: i(f)(a) = f(ί(a)).
Let p : K —»^4 <S> F be a left ^4-comodule. Then every functional / G A* defines

an operator p ( f ) : V —•> V as a through map V —>• A ® V —>• V. It is clear that
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P(f) ' P(θ) equals p(f g), i.e. a left ^-comodule defines a left ^*-module (this
is the reason why we prefer the multiplication in A* to be opposite to the comulti-
plication in A). So we have described a fully faithful functor from Rep(^4) into the
category of left A* -modules.

*.7.2. If A is finite dimensional we define the comultiplication in A* to be dual to
the opposite multiplication in A:

Then (Λ*,ro*,Λ*) is a Hopf algebra.
When A is infinite dimensional the formula (*) defines A*f as an element in

(A® A)* which is larger than A* ®A*. Thus we cannot consider A* as a Hopf
algebra.

There are two usual strategies how to deal with this difficulty. The first is to
choose a completion of A* 0^4* such that A*f would be defined for every / G A*.
The second is to choose a subalgebra U C A* on which A* is defined, which is
closed with respect to A* and which is "big enough" (this means that U is dense
in A* in weak topology, or, equivalently, that the orthogonal complement of U in
A is 0).

Our approach is to construct a Hopf subalgebra U C A* and describe some
subcategory of ϋ7-modules which is close enough to the category Rep(y4).

*.2. Basic Example

*.2.7. We consider the following simple but very instructive case. Let A = S =
<C[H] be the Hopf algebra of regular functions on a torus H. Then the dual algebra
5* can be realized as the algebra of all functions on the lattice Λ of characters of
S. There are several natural choices for a subalgebra U C S*:

(i) Algebra U = U° - a free algebra generated by elements h(h G H C S*).
This is a Hopf subalgebra, since A(h) = h 0 h. Here we use h to distinguish the
generator of an algebra from the point of a torus. Our example - SL(2) - could
be the most confusing since points of the torus are described by non-zero complex
numbers.

In fact, they often use an even smaller subalgebra, generated by some subgroup
of H. For example, in SL(2) case we can take the smaller subalgebra generated by
two elements q, q~

(ii) U — U(2F )-the enveloping algebra of the Lie algebra of H. This is a
Hopf subalgebra.

(iii) U — IJf - subalgebra generated by £7° and U(3Jf). This subalgebra can
be described as the algebra of all functionals, which are finite with respect to the
multiplicative action of S. This is a Hopf subalgebra.

(iv) U = S*. In this case we have to complete 5* 05* to (505)* in or-
der to be able to define A. We set 5*05* := (505)*. The algebra 5*05* could
be realized as the algebra of all functions on the lattice Λ® Λ. If / E 5*, then

*.2.2. Our main interest is the category of 5-comodules = the category of algebraic
representations of H. We can describe the category of algebraic representations of
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H as the category of {/-modules, which are algebraic when restricted to H (when
H is not a subalgebra of U we should say correspond to an algebraic representation
of//).

Thus, from our point of view, the dual object to S is any Hopf algebra U which
is "dual" to S in the sense described above together with a category of ^/-modules
which are algebraic when restricted to H.

"".2.3. Later in this paper we prefer to take U = S* as this is the most general case,
and it includes all other cases; or, alternatively one can take U = £7°-in this case
comultiplication formulae look clearer and simpler.

*.3. Axiomatic Approach

* J./. Let A be a Hopf algebra with a Hopf ideal /, satisfying the assumption I.
We call a functional / e A* /-finite if it vanishes on some power of the ideal /.

The space of /-finite functionals we denote by £/. This space is an algebra; and has
a natural algebra filtration t/0 C U\ C . . . , where Uf consists of functionals which
vanish on 7I+1. In particular, the subalgebra UQ = S* contains H as a subgroup.

Definition. The (U,H)-module is α U -module such that its restriction to H is
an algebraic representation of H. The category of (U,H)-modules we denote by
Ji(U,H\ As follows from the construction we have a canonical faithful functor
Rep(^4) — > Jί(U,H). This functor is fully faithful provided U is dense in A, i.e.
provided that the powers of the ideal I have 0 intersection.

*.3.2. Let us describe in more detail the structure of the algebra U. We saw that
UQ = S*. Also, it is clear that U is generated by U\ as an algebra. In order to
describe the structure of U\ we suppose that A satisfies the assumption II. That
means we can use decomposition A/I2 = S 0 T from 4.5.

For every α E Σ, we fix a non-zero vector EΆ in the one-dimensional space
M^α. Since T = (0α6ΣMα) ® S9 then EΛ defines a morphism S* -> Γ* CΛ*. In
particular, it defines a family of elements Ea(f) G Γ* for / e S*. Now the S-
bicomodule structure of T defines an S* -module structure on the space of operators
spanned by EΛ(f). It is easy to describe this structure:

It is clear that if for every α we fix /α G S*9 then Uι = S* @ 0α £*£«(/«).

*.3.3. Now we want to define the comultiplication on U. In order to do this, we
need to complete U ® U. We set

U®U:=(S*®S*) <g) ( ί/(g)t/) .
s*®s*

The comultiplication A on S* is defined as in *.2.1.(iv). We also have

Δ(E,(f)) = Δf (£α(l)® y_ α + 1 ®
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on U\. Since £70 £7 is a subalgebra of (A 0^4)*, the multiplicativity of A and the
fact that U is generated by U\ implies that ΔU £ £70 £7. Moreover, this gives us
an explicit description of the comultiplication.

So the category Jt(U,H) becomes the tensor category; and we have a monoidal
functor Rep(Λ) -> J((U,H).

"".3.4. Resume. We choose a subalgebra U C A* which is attentive to the Hopf
ideal /. Then we complete U 0 U in order to define A. This completion is easily
described in terms of the completion S* 0 5* to (S 0 5)*. Then we restrict ourselves
to the category Jί(U,H) which is our choice of the dual object to A.

*.3.5. Later in this paper instead of U we will consider a smaller algebra £7° C U,

which is generated by h(h £ H) and by elements Ea(h) satisfying the relations:

Δ(EΛ(h)) = EΛ(h) 0 hγ_Λ + h

The antipode in £7° is defined as follows:

i(EΛ(h)) — —h E<χ(h)h ylα .

*.4. Universal Object

*.4.1. We denote by £7 a free algebra generated by elements h(h £ H) and by
elements EΛ(h) satisfying the relations *.3.5.

We define a comultiplication A on £7 as in *.3.3. We define the category

Jί(U,H) of (£/,//)-modules as in *.3.1. Then we have an epimorphism of Hopf

algebras £7 —> £7 which induces a fully faithful monoidal functor Jί(U,H) —>

J((U9H); and hence, the functor Rep(Λ) -> JK(U,H).

*.4.2. Summary. We constructed a Hopf algebra £7 using only the S-tetramodule

T. And for any S-tetramodule T we can construct a Hopf algebra £7.

*.5. 5Lf(2)

*.5./. We apply our approach to the algebra Aq of functions on the quantum group
SLq(2). The definition of Aq and / C Aq is given in Sect. 1.

The space M of right //-invariants in I/I2 is two-dimensional: M = Mα 0 M_α,
where α is a character of weight 2. And
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*.5.2. In this case the Hopf algebra U is generated by elements h,h G H « C* and
by elements E(h) = £α(A) and F(Λ) = E-Λ(h) satisfying the relations:

(1)

(2) Δh =

ΔE(h) = E(h) <g> (<pA) + A

- F(A) 0 (<p70 + A

*.5.3. Let us see how the algebra £7 constructed from Aq corresponds to the defi-
nition of the enveloping algebra of the quantum group SLq(2) (see [D, J], we use
notations of [L]).

We denote by K an element in U which corresponds to q G H, K = q G S*.

E = E(q),

Then
XEK-1 - #2£

JA: = K 0 ̂  ,

*.5.4. We did not get the formula for [E,F] in the quantum group SLq(2). We could
not have done it, because we took into consideration in our axiomatic approach only
the structure of gr0^ Θ gi^ Aq. This structure forgets, for example, that be = cb.

In the next sections we will develop our axiomatic approach to get a relation
for [E,F].

5. Universal Objects

5.1. Denote by Jtf(S,T) - the category of TL+ -graded Hopf algebras B, such that

B\ — T\ and B supplies T with the given S-tetramodule structure.

5.2. Lemma.

1) The category Jήf(S,T) has the initial object B1 such that for any object B
there exists a canonical morphism B1 —> B;

2) The category Jjf(S, T) has the final object B? such that for any object B
there exists a canonical morphism B —> B^\

3) The category 3F(S,T) has the minimal object Bm such that for any object
B there exists a subalgebra B' C B and a canonical epimorphism B' —» Bm.
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Proof. It is easy to check that the construction in following paragraphs gives objects
in question.

5.3. Given an 5-tetramodule T we can consider T as an 5-bimodule and construct
a universal graded algebra Bl(S,T), such that B1

0 = 5, and B\ = T; and Bl supplies
T with the given 5-bimodule structure. Bl is a universal object as an algebra.
Coalgebra structure is reconstructed on Bl by the 5-comodule structure on T and
multiplicativity. The antipode is uniquely reconstructed on Bl by the antipode on S
and its properties (see the tensor algebra in [W]).

5.4. Now, given an 5-tetramodule T we would like to construct a universal object
with respect to the coalgebra structure of Γ.

Given two 5-bicomodules V\ and V^ we denote by V\ (̂ ) VΊ a subspace in
V\ 0 F2, so that it is a kernel of an operator:

cr 0 id - id 0 ct : V\ 0 V2 -> V\ 0 S 0 F2

(see [Kh], or cotensor product in [Sch]).

Given an 5-bicomodule V denote B^(S9V) the space ( -(V(g)S V)(&S -

(££) V) (n times). It is easy to see that Bn is an 5-bicomodule and is isomorphic

to B{®SBf

m for k + m = n; k,m ^ 0.

Denote # (̂5, F) = ̂ 0<« ^« The sPace ̂  *s supplied with the natural comul-

tiplication structure. Namely, we define Δ : B{ —> £^ ®s B f C Bf 0 #Λ so that for
any &, m ^ 0 & + m = w the composite map

would be canonical isomorphism.

Proposition. The above defined B^(S, V) is a universal graded coalgebra with

βζ = 5, B{ — V\ and B? supplies V with the given S-bίcomodule structure.

5.5. Statement. Given an 5-tetramodule T the universal coalgebra B^(S,T) is sup-
plied with canonical Hopf algebra structure.

Proof. Actually, Hopf algebra B? is universal in a stronger sense: namely, for any
graded Hopf algebra C and compatible morphisms Co —> 5, C\ —> Γ; there is a
canonical morphism C -> Bf(S, T). It is easy to see that Bf(S, Γ) 0 Bf(S, Γ) is a
universal free graded coalgebra 5^(505,5 0 Γ + Γ 05). We have natural mor-
phisms: m : S 0 5 —» 5 and mi -f #?r : 5 (8) Γ + T 0 5 —•> Γ. By universality property
they define a multiplication map: 5-̂ (5, Γ) 0 5/(5, Γ) -> Bf(S, Γ).

The antipode could be always defined on Γ and by universality property recon-
structed on β f .

5.6. By definition of Bl(βf\ we have a canonical morphism A:

A : £'(5, Γ) -> ̂ (5, Γ).

We put Bm equal to ImΔ. For any object B we can canonically write Δ as the
composition map: Bl —* B —* B^. This means that B has a subalgebra B1 = ImBl,
such that £w is a surjective image of B'. End of proof of Lemma 5.2.
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5.7. Comments. 1) The Hopf algebra B? is in natural duality with the Hopf algebra

U described in *.4. The morphism U —> U corresponds to a morphism A —»B ,

where B is the natural completion of βf (namely, B = γ[. B{).
2) The construction of a minimal object Bm in the category J^(S9 T) is very

similar to general construction of irreducible representations in representation theory.
For example, in case of category (9 one describes explicitly basic modules Mχ and
δ(Mχ)\ and then describes an irreducible object Lχ as the image of the canonical
morphism / : Mχ —> δ(Mχ). Similar construction appears in Langlands classification
of representations of real reductive groups (and, on a more elementary level, in
classification of representations of symmetric groups).

6. Back to Aq

6.1. In this and the following sections we would like to describe the situation
discussed above in 5Z(2)-case. Namely, consider

Assumption III. Our torus H is one-dimensional; and the space TH of right H-
invariants is the sum of two one-dimensional spaces of weights α and — α.

6.2. Consider an object B in the category jff(S, T). By definition BQ = S, B\ = T.
We would like to discuss now what we can tell about B^.

Consider the algebra Bl(S,T). The space B1

2 would be isomorphic to T(QST.
The space of right //-invariants in B\ is four-dimensional of weights (— 2α,0,0,2α).
The same is true for βf(S, T).

Consider the algebra B = grAq, where Aq is the Hopf algebra of functions on
SLq(2). Then B2 = I2/!3. Its space of right //-invariants is three-dimensional and
corresponds to three one-dimensional representations of// of weights (— 2α,0,2α).
Hence, the canonical morphism B1 — > grAq has a kernel. This comes from the fact
that in Aq (and, hence, in grAq) we have the relation be = cb (see 1.1 and *.5.4);
while in Bί this relation is absent.

6.3. We see that in the SL(2) case Bm is smaller than Bί and Bf (A has a kernel).
In fact, Bm is much smaller, since B1 has exponential growth -άim(Bί

k)
H — 2k, while

grAq has polynomial growth -dim(grA:v4^)// = k + 1. This shows that it is important

to investigate tetramodules for which A has a nontrivial kernel.

6.4. To perform the calculations we would like to restrict ourselves to the study of
the second graded component of A(Bi

A2 :
s

The existence of the kernel gives us hope to get a Hopf algebra similar to Aq.

6.5. So we come to a

Definition. We will call an S-tetramodule T an S-tetramodule of SL(2)-type if
S = <C[//], (H = <C*), TH = Mα 0M_α and the operator A on (T®s T)H has
one-dimensional kernel of weight 0.
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7. S-Tetramodules of SL(2)-Ύype

7.1. Let T be an S-tetramodule of *SZ(2)-type. Let 5- G S be the coordinate func-
tion on H = C*. We have TH = Mα ΘM_α. The weight α equals n : α = sn. The
bimodule structure of T is described in 4.3. It is defined by two points of the torus
yα and y_α. In our case they correspond to two numbers s(ya) and -s(y_α) in C*.
Let us choose t\ and ^ elements of Mα and M_α respectively. We have

Ati = sn 0 *ι 4- fi 0 1 ,

The space of right //-invariants in T §ξ)s T of weight 0 is spanned by t\t2 and

t2t\. We apply Δ to these elements:

+ (-

7.2. Simple calculation immediately gives us the following

Lemma. T is an S-tetramodule of SL(2)-type iff α(yα) = α(y_α), or equίvalently,

7.3. Let us denote s(y-a)~l by q. Then s(γOL) = εq~l, where ε is an nih root of
unity. For generic q the kernel of Δ2 is spanned by the vector t\t2 — q~nt2t\. It is
easy to see that this vector generates a Hopf ideal in Bl. So we can take a quotient
of Bl by this ideal.

We will denote the quotient algebra by Bg(n, ε).

7.4. Remark. Understanding that the kernel could be of some importance, let us
check whether Δ\^τ^ Tya has kernels of weights 2α or (—2α). It is easy to see that
there exists a kernel of weight 2α (resp. —2α) iS s(γa[)

n — — 1 (resp. s(y_α)w = — 1).
Hence we can expect that the points q(qn = -1) are special for Bg(n,ε).

7.5. Example. grAq « Bg(291). Special points are q = ±z.

*.6. Dual Picture. Quantum Commutator

*.6.1. We want to construct a Hopf algebra dual to Bq(n,ε). In *.4 we have

described an algebra U which is dual to βf(n,ε). The algebra U is generated by
elements /z, (h G H) and by elements E(h} = E^(h) and F(h) = E-Λ(h) satisfying
the relations:

(1)

h2E(h,) = E(h,h2),

F(hλ)h2=s(h2)
nF(hλh2),
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(2) Ah = h®h,

ΔE(h) = E(h) 0 (q~lA) -f A 0 E(h),

AF(h) = F(h) 0 (έq~lh) -f A 0 F(A) .

*.<5.2. To get a quotient algebra in U which is dual to Bq(n,ε\ we have to add the

relation in U2 which is orthogonal to the image of A2. That is

This relation is equivalent to the relation

s(h2γE(hλ)F(h2) - qns(hλΓ
nF(h2}E(hλ} = 0

for any h\,h2 G H.

*.6.3. For any Hopf algebra B, which is an ^4-tetramodule we can define a quantum
commutator on B with respect to A: [ , ] A (we would use this definition when B is
a graded Hopf algebra and A — BQ). This definition is due to Woronowicz (see the
external algebra in [W]). Namely, we have the standard adjoint action of A on 5:

AάAa :A®B^B b*-+ Σak ' b ' ^k) »
k

where Δa — Σk

 a\ ® al

Definition. We define [ , ]A as the difference of two operators from B 0 B to B:

Examples. 1) If B is a tetramodule over the field k, then [b\9b2\k — b\bι — b^b\.
2) If b\ is a right ^-coinvariant, and bi is a left ^4-coinvariant, then [61,62]^ =
-b2bι.

*.6.4. We can write the relation in *.6.2 as a quantum commutator in U with respect
to H (subalgebra generated by A):

If s(h\) = qs(h2)~l, then the quantum commutator is proportional to the usual
one: [E(qh~l),F(h)]H = h"[E(qh-l),F(h)], in particular [E(q\F(\)}H = [E(q\
F(l)]. We have the following important relation:

which is equivalent to

Δ[E(q\F(\)}H = [E(q),F(l)]H ® ̂ -' + q®

*.6.5. Statement. The algebra generated by elements h,E(h),F(h) (h e H) and the
relations (1), (2) and

(3)

is a Hopf algebra.
This algebra is "dual" to Bq(n,ε).
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*.7. Metaplectic Quantum Groups of 5Z,(2)-Type

*.7.7. We have constructed the family of graded Hopf algebras Bq(n,ε) which are
analogues of gr^ Our goal is to describe a family of quantum groups G = Gq(n,ε)
which we call metaplectic groups of S£(2)-type. The algebra Aq(n,ε) of functions on
this group has the property: grAq(n, ε) — Bq(n,ε). These algebras are the analogues
of Aq. We will call Aq(n,ε) the algebra of functions on metaplectic quantum group
SLq(2)(n9ε) of SX(2)-type. In this section we construct a Hopf algebra Uq(n,ε)
which is dual to Aq(n,ε) and which could be considered as the enveloping algebra
of metaplectic quantum group SLq(2)(n,ε).

*.7.2. Using the decomposition A/I2 = S Θ T (see 4.5), we see that U(n>ε)1 =

S* Θ Γ*. Thus, we have a canonical morphism of Hopf algebras Uq(n,ε) — » Uq(n,ε).

Passing to associated graded algebras we have a morphism ( / > : £ / = gr t/—>grt/ =

0£*. As we saw this morphism gives us an isomorphism: gr U = U/K9 where K is

the relation [E(q),F(l)] = 0. Thisjmplies that U = U/K', where K1 is the relation

[E(q)9F(lJ\ + Q = 0, where Q G U1. Since φ is equivariant with respect to adjoint
action of H and K is invariant with respect to this action, this implies that Q is

ad-invariant and hence Q G £/o = S*. Since φ is a morphism of Hopf algebras, then
Q satisfies the relation (see *.6.4):

*.7.3. Statement. All solutions of (*) are proportional to

q-εq~l

We normalize Q by the condition Q(s) = 1, so we will choose

*.7.4. Theorem. The elements h,E(h)9F(h) satisfying the relations *.6.1 and the
relation

(3)

generate a Hopf algebra.
This is the announced Hopf algebra Uq(n,ε).

*.7.5. We denote E(q) by E,F(\) by F. We can rewrite the definition of metaplectic
quantum groups in the more compact form:

Definition. The Hopf algebra Uq(n,ε) is generated by multiplicative elements

h (h e //), and E and F satisfying the relations:

(1) hEh~l = s(h)nE ,
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(2) Δh = h®h,

ΔE = E®l+

AF =F ®έq~

*.7.6. Examples. 1. The subalgebra of Uq(2,1), generated by E,F,K = q gives us
the usual definition of the universal enveloping algebra of the quantum group SLq(2)
(see [L]). We think that our approach has some advantages. For example, we have
only one one-dimensional representation of our algebra-the trivial one.

2. The subalgebra of Uq(l, 1) generated by the E9F,K = q gives us the usual
definition of the universal enveloping algebra of the quantum group PSLq(2).

3. The Hopf algebra Ug(29 — 1) could be described as the specialization of
GLptq (2) (see [M2]), when p = -q.

8. Hopf Algebra of Regular Functions on Metaplectίc Quantum Groups
of S£(2)-Type

8.1. Axiomatic approach. We would like now to describe the algebra Aq(n,ε) of
functions on the metaplectic group Gq(n,ε). This should be a Hopf algebra dual to
Uq(n,ε) such that grAq(n,ε) = Bq(n,ε).

In general we are not sure whether in all cases it is possible to construct an
algebra A which is a Hopf algebra in a standard sense. The reason is that the only
things we really can describe with our approach are the quotients A/In for all n.
This means that the algebra which we can construct is the completion of A with
respect to powers of the ideal /. In other words, the natural dual object to U will be
an algebra A with a two-sided ideal / complete with respect to the 7-adic topology
defined by powers In of the ideal /.

What about comultiplication. If we want it to be a morphism Δ : A —> A ® A,
then we do not know how to construct it (in fact there is no reason to expect that
the comultiplication will be defined on the whole completed algebra A). However,
working in this situation it is natural to replace A ® A by a completed tensor product
A<§A . Namely, consider a two-sided ideal /' = / ®A -\-A ®7 of the algebra A ®A
and denote by A®A the completion of A ®A in 7'-adic topology.

8.2. It turns out, that with this definition we can define on A the natural structure of
a completed Hopf algebra. In other words, we will construct a pair (A,I), where 7 is
a two-sided ideal of A and A is completed in 7-adic topology, and a comultiplication
A : A —> A®A, which satisfies all the axioms of Hopf algebra.

Namely, consider the completed algebra B corresponding to our tetramodule
T = T(n, ε). It is easy to see that it is a completed Hopf algebra in a sense described
above, and that it is in natural duality with the algebra U(n,ε). Now let us denote
by K' the kernel of the natural projection U(n,έ) —> U(n,ε) described in *.7.2
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and define A(n,ε) C B to be the orthogonal complement of K', i.e. A — {b e
B\(b,K') = 0}.

Since U(n,ε) — > U(n,ε) is a morphism of Hopf algebras, ^ is a completed Hopf
algebra dual to U(n,ε).

*.8. Representations of Uq(n,έ)

*.8.1. Let £/ = Uq(n,ε) be the universal enveloping algebra of metaplectic group
Gq(n,ε). We denote by J((G) the category J((U,H) of (t/,#)-modules. We con-
sider the subcategories J^(G) C &(G) C "'Jt(G\ where 2P is the category of finite
dimensional modules and & is the category of (P-modules, i.e. finitely generated
(t/,//)-modules M for which weight spaces M are 0 for large /.

The comultiplication in U allows to define a tensor product of (t/,//)-modules
and hence defines on each of these categories the structure of the monoidal category.

*.8.2. Let / be a divisor of n. Then the group H has a unique cyclic subgroup C
of order /. It is clear from our definitions that this subgroup lies in the center of
the algebra U(n, ε). In other words, C can be considered as the central subgroup in
the metaplectic quantum group Gq(n,ε).

We can consider a quotient quantum group G/C. Its universal enveloping
algebra U(G/C) equals U/I9 where / is the ideal generated by {c — \\c e C}. The
corresponding algebra of functions A(G/C) can be described as a subalgebra of C-
invariant elements in A(G) with respect to the natural left (equal to right) action of
C on A(G). It is easy to see that U(G/C) is the algebra of type U(n/l,εl). In par-
ticular, we have the natural monoidal functor J((G/C) — » M(G\ which transforms
^-modules into ^-modules and finite dimensional modules into finite dimensional
ones.

Examples. 1) Let I — n. Then G/C is isomorphic to PSLq(2).

2) Let n be even, / = n/2. If εl = 1, then G/C is isomorphic to SLq(2).

*.8.3. Let / be the minimal positive multiple of n/2 such that εl = 1, that is / = n
if n is odd, or n is even and εw/2 = — 1; / = n/2 if n is even and εw/2 = 1.

Proposition. Let C be the central subgroup, corresponding to I. Then for generic q
any finite dimensional representation is trivial on the subgroup C. In other words,
the functor. J^(G) — » J^(G/C) is an equivalence of the categories.

Thus, the monoidal category of finite dimensional representations of a metaplec-
tic group G is equivalent to the category of finite dimensional representations of
one of the classical groups SLq(2) or PSLq(2).

Proof. Let V be a finite dimensional (t/,//)-module. We can assume that it is
irreducible. Standard argument shows that V has a highest weight vector fo, such
that VQ has the weight N9 and EvQ = 0. Let us denote FIVQ by i;/. The weight of vt

equals N — ni. The commutation relation for E and F shows that
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There exists A ΦO such that U j t Φ O and Fvk = 0. Then the vectors VQ,...,Vk
generate a k -f 1 -dimensional irreducible representation of G. Thus for generic q
we have that 27V = nk and ε^ = 1. Hence N e ITL.

*.8.4. Let C C // be a central subgroup in G. For any character £ of C we denote
by Jίξ(G) the subcategory of modules on which C acts via character ξ. Clearly

and Jΐξ®JίηC Jίξη. Similarly for 0(G) and

*.&5. Fix a subgroup C as in *.8.3. Then the category ^(G) is one of two classical
categories. For any character ξ we have compatible right and left actions of this
classical category J^G) = J^G/C) on the category Jίξ(G) and, in particular, on
the category Oξ(G).

References

[A] Abe, E.: Hopf algebras. Cambridge, New York: Cambridge University Press, 1977
[D] Drinfeld, V.G.: Quantum groups. Proceedings of the ICM, Providence, Rhode Island:

AMS, 1987, pp. 798-820
[G-S] Gerstenhaber, M., Schack., S.D.: Algebras, bialgebras, quantum groups, and algebraic

deformations. Contemp. Math. 134, 51-92 (1992)
[ί] Jimbo, M.: A ^-analog of U(gl(N + 1)) Hecke algebra, and the Yang-Baxter equation.

Lett. Math. Phys. 11, 247-252 (1986)
[Kh] Khovanova, T.: Tetramodules over the Hopf algebra of regular functions on a torus. IMRN

7, 275-284 (1994)/hep-th 9404043
[L-S] Lyubashenko, V., Sudbery, A.: Quantum supergroups of GL(n\m) type: Differential forms,

Koszul complexes and Berezinians./hep-th 9311095
[L] Lusztig, G.: On quantum groups. J. Alg. 131, 466-475 (1990)

[M] Manin, Yu.L: Quantum groups and non-commutative geometry. CRM, Universite de
Montreal, 1988

[M2] Manin, Yu.L: Multiparametric Quantum Deformation of the General Linear Supergroup.
Commun. Math. Phys. 123, 163-175 (1989)

[R-T-F] Reshetikhin, N.Yu., Takhtadzhyan, L.A., Faddeev, L.D.: Quantization of Lie groups and
Lie algebras. Leningrad Math. J. 1, 193-225 (1990)

[Sch] Schauenburg, P.: Hopf modules and Yetter-DrinfeΓd modules. J. Alg. 169, 874-890
(1994)

[S-S] Shnider, S., Sternberg, S.: Quantum groups. Boston, Hong Kong: International Press, 1993
[S] Sweedler, M.E.: Hopf algebras. New York: Benjamin, 1969

[W] Woronowicz, S.L.: Differential Calculus on Compact Matrix Pseudogroups (Quantum
groups). Commun. Math. Phys. 122, 125-170 (1989)

Communicated by A. Jaίfe




